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systems when a singular potential is present.

strong force condition of Gordon.

and multiplicity results for such solutions.
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This paper presents a minimax method which gives existence and

weak force condition, generalized T-periodic solution |

A MINIMAX METHOD FOR A CLASS OF HAMILTONIAN
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multiplicity results for time periodic solutions of a class of Hamiltonian
The singularity satisfies the
When milder singularities are permitted a

notion of generalized T-periodic solution is introduced and we get existence
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A MINIMAX METHOD FOR A CLASS OF HAMILTONIAN
SYSTEMS WITH SINGULAR POTENTIALS

Abbas Bahri* and Paul H. Rabinowitz*'

Introduction

Recently there has been a considerable amount of work on the existence of

time periodic solutions of prescribed period for Hamiltonian systems of the

form

(HS) g+ Vi =0 .
- Here q = (qq,++2sqy), 0 > 2, V : R\S + R, V and V' + 0 as [q| + « and
éz V is singular on S, i.e. IV(q)l +» as q + S. The case where V
-~

Fd

depends explicitly on t in a T-periodic fashion has also been treated. See

ll ‘l

-

e.g. Ambrosetti and Coti-Zelati [1-2], Coti-Zelati [3], Degiovanni, Giannoni,

and Marino (4], Greco [5-6], and especially the extensive bibliographies of
(1) and [3]. These papers were motivated in part by earlier work of Gordon
(7] which is mainly for n = 2. Our own study of singular Hamiltonian systems
was a consequence of our interest in [5]; we only learned later of {1~4].

The major focus of this paper is with singular potentials for which §
is a single point which is taken to be the origin. Slight modifications of
our methods permit us to treat more general compact sets S. To describe our

results assume V satisfies:

L}

v

(Vy) v e ¢ (RN\{0}, R, n >3,
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(V,) V(gq) <0 and V(q), V'(q) » 0 uniformly as |q| » =,
(V3) -V(q) +» as q + 0, . !
(V4) There is a neighborhood W, of 0 in R® and a function |
U e c'(W\{0}, R) such that U(q) » » as q + 0 and -V(q) » |U'(q)]|2
for q € W\{0} ,
(Vg) K = {v(q) | v'(q) = 0} is bounded.
Hypothesis (V,4) governs the rate at which =-V{q) + ® as q » 0. It was
introduced by Gordon who called it the strong force condition. If e.g.
V(g) = -Iql-B for g near 0, (V,) is satisfied if B > 2. Thus the
Coulomb potential with 8 = 2 satisfies (V4) but the gravitational potential
with 8 = 1 is excluded.
We have two types of results for (HS). First in §1 under hypotheses like
(V,) - (V4), the existence of T periodic solutions of (HS) for any T > 0
will be established. Other authors [1~3], [5-6] have obtained similar
results. Like them, we will use the calculus of variations to obtain
solutions of (HS) as critical points of the corresponding functional

(0.1) 1@ = [0[3 14]% - vea)Jae .

The main novelty in our treatment of I 1is our rather geometrical minimax
characterization of a corresponding critical value, c¢. This approcach leads

to an estimate in §2 relating ¢ and T of the form

£
: 8

<,

&
2t (0.2) T < co(2(27¢)72)
<
> where
e(r) = max - (V(q)).1 .
0<|q|<r

Inequality (0.2) leads to multiplicity results for (HS) like:
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{j Theorem 9.3: If V satisfies (V1) = (Vg), then for any T > 0, (HS)
SN

possesses infinitely many distinct nonconstant T-periodic solutions.

Our second type of result for (HS) is also based on inequality (0.2) aﬁd
involves removing the condition (V4). One of the consequences of (V4) is that
if q ¢ w1'2 and V satisfies (V1), (V3) = (V4) then q(t) # 0 for all
t ¢ [(0,T]. However if (V4) is eliminated, it is possible that a w1'2
solution gq of (ES) can vanish somewhere, i.e. enter the singularity of V.
Such "collision" orbits cannot be classical solutions of (HS). Thus a broader
notion of solution is needed. See also [8] in this regard. In §3 a notion of
generalized T-periodic solutions of (HS) will be introduced. With the aid of
the existence results of §1 - 2, and an approximation argument, it will be

shown that (HS) possesses multiple generalized T-periodic solutions. E.g. we

have

Theorem 0.4: If V satisfies (V1) = (V3), then for each T > 0, (HS) has

infinitely many distinct generalized T-periodic solutions

§1. A minimax method to solve (HS)

In order to establish the existence of periodic solutions of (HS) via a
minimax arqument, a few preliminaries are required. Let CT(R,a?) denote the

Banach space of T-periodic functions on R with values in R" under the

usual L® norm. Let Ep = w;'Z(R,R“) denote the space of T-periodic

functions on R with values in R® under the norm }

1 /2 ‘

23t + @19 ‘

T o
1ql = (f, lq|
where

1.7
ql =3 IO g(t)at .

YT

‘h-'l

:J‘,:.'

ﬁxj When there is no ambiquity, the subscript T will be omitted. Note that
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Eq C Cp(R,R").  Let

A= 1q € Eg | a(t) # 0 for all t e (0,T]} ,

i.e. A is the subset of E of loops which avoid the origin. Clearly A is
an open subset of E. Standard results and the definition of A imply that
if

(1.1) I(q) = fg[%-lélz - V(q)]dt ,

then I ¢ C1(A,R) and any critical point of I on A 1is a classical

solution of (HS) [9]. The family of constant loops, R°\{0} 1lies in A and

will be denoted by A.

Critical points of I will be obtained by minimaxing I over certain

surfaces that will be introduced next. Let D" denote the unit ball in R%.

I = {h e C(D""2, A)|hlsn_3 = constant}

while for n = 3

I ={h e C([-1,1, A) |n(1) and h(-1) € X} .

Identifying 0 and T, and the interval (0,T] with s!', associated with

~ - - |
each h el isamp f e (D% xs', ") defined by

h(x)(t)

Bx/ &) = TG0 ()]

For n > 3, this map is constant on s"3 x s, the boundary of D=2 x sl

Therefore h can be considered to be a map from sn=2 s! into s, As

SN

such it has a degree which will be denoted by deg h. The situation is a bit

P

different for n = 3. Then
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h t (-1,1] x s! . §?

R
0 with h(1,t) = K(1,T) anda H(-1,t) = R(-1,T). Collapsing {-1} x s' toa
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point £ and {1} x s to -£, b may be viewed as a map of s? into s2
and therefore has a degree, deg h.
Let

I*"={herl | deg & # 0} .

*

Lemma 1.2: T # ¢.

Proof: This is obvious if n = 3. If n > 3, more care is needed. The

1

set Ss"2 x s' can be parametrized by (x,elt) where x ¢ "1 with |[x|? =

x% +oee+ x§_1 = 1 and t ¢ [- %: %’.], Define a map g : Sn-—Z x S‘ > sn-1 as
follows:
ity _ 2 2t T
g(x,e” ") = (x /1 - 4; . ;—4 . tel-% EJ
b
» : ™ 37
= (=-cos t, 0,...,0, sin t) , t ¢ [37 > .

Then g ¢ C(Sn"'2 X S1, S“"). To calculate its degree, choose a regular point
of g, e.g. (-1,0,...,0). The inverse image of this point is
(=1,0,...,0) x {1} € s® ' x s, Therefore deg g = 1 or =1 depending on

the orientation chosen for S“'2 x S1 and S"'1. It is then easy to see that

there exists h ¢ ' such that g = . Therefore P’ # 2.

b

{j Now a minimax value of I can be defined as

I:'J

o (1.3) ¢ = inf max I(h(x)) .

" * -

En'-J hel XEDn 2

- We will show that under appropriate conditions on V, ¢ 1is a positive

.

:}: critical value of 1I. A few technical points are required to do this. First:

e~

P{f

L._ Proposition 1.4: If V satisfies (Vy) = (V,) and

v

C;‘ (Vg) There is an a > 0 such that
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lim inf -V{(q) > a ,
q+0

then ¢ > 0.

Proof: 1If not, there is a sequence (hy) C r' such that I(hp(x)) » 0 as

m+ o for all x e D2, By (1.1) and (Vy), as m » =,

d
(1.5) Idt hm(x)llL2 + 0 .

Since for all q ¢ E,

YV .
(1.6) g - lall < 214 .
® 2
L L
(1.5) shows that
(1.7) ﬂhm(x) - [hm(x)]ﬁ o 0
L
as m + ». By (V,) and {1.1) again,
(1.8) 3 Vihg(x) (£))at » 0

as m + =. Consequently by (1.7), (V3), and (Vg), [hg(X)] » =. It follows

that for large m, hm(-) is homotopic in I' to [hm(-)]. Therefore for

n > 3 and large m, gm is homotopic to a map ¢ ¢ c(s"? x g!, sn—1);
(h_(x)]
m

(1.9) elx,t) = th_ (7]

while for n = 3, ¢ € C(S2,52) and is defined as in (1.9). For n > 3, ¢

factors through the projection map &P~ x s! » sn—2

since it is independent
of t. Therefore deg ¢ = 0. Similarly if n = 3, ¢ factors through the

*
map (x,t) + t and deg ¢ = 0. Thus in both cases for large m, hm £T, a

contradiction. Hence <c¢ > 0.

Remark 1.10: Suppose S D R? is compact with 0 ¢ S and (V4) is replaced by

(Vi) Vv ec'(®R\S, R}, n > 3.

M okl Al s
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As = {q € E , q(t) £ S for all t ¢ [0O,T]} .,

the set of loops in E which avoid S and let
=(eeR®R | g és} .
Finally set

n=-2
r. = D = .
s {(h ¢ C{ ,As)lh] n=3 constant}

Then the proof of Lemma 1.4 yields: If V satisfies (Vj), (V,), and

(vg) lim inf - V(q) > a > C ,
q*$

then ¢ > 0.

L

)

Next it will be shown that I satisfies the (PS)+ condition on A, i.e.

(P$)*: For any s > 0, if (gy) C A, Ilgy) » s and I'(qgy) + O, then

\f\."‘, @

9, possesses a subsequence converging to some q € A.

SORRAR

Note that by taking a sequence gqp € X with qm * ©r I(gy) » 0. Thus I
does not satisfy (PS) at level 0 and does not attain its infimum. Indeed this
is one of the difficulties in treating I variationally. Our argument is a

variant of that of Greco [5]. It is easy to check that:

Lemma 1.11: Let V satisfy (Vq), (V3) = (V4). If (qp) C A and gqp

converges weakly in E and strongly in L to g € 3A, then

T
- IO V(qm(t))dt + ®

(and therefore 1I(q,) * =).
Proof: See (5, Lemma 2.1}.

Proposition 1.12: If V satisfies (V4) - (V4), I satisfies (ps)* on A.

Proof: Let s > 0 and (qp) C A with I(q,) »s and 1'(qy) *» 0. By

(1.1), (ém) is bounded in L2. We claim ((qp]) is also bounded in R" and

-7-
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therefore (q_ ) is bounded in E. If not, I[qm], + o along a sub-

GG LT
LA
LI |

]
« .
[ S

sequence. Hence by (1.6) and (Vy),

?:_': (1.13) [§ Vigg(t))dt » 0
S
L and
e
T
2 T
. (1.14) Jo V'(Gn) * (qp - lapl)dt » 0

as m + o, Therefore by (1.13) ~ (1.14),

1 1 T
= e ] - -— 1 . -
Iq ) = 5 I'(q ) lq lq 1) + 5 fo vilg ) (q - [q l)at
(1.15)
- [T v(qg (tnat » 0 .
0o '

But I(qp) + s, strictly positive, a contradiction. Now the boundedness of
9m 1in E and standard embedding thecrems imply along a subsequence qp

converges weakly in E and strongly in L to gq € E. Since I(qm) + s,

Lemma 1.11 shows gq € A. Hence the form of I' shows g, + g in E.

Remark 1.16: 1In the spirit of Remarkx 1.10, if (V4) is replaced by (V}) and
(V3) = (V4) by

(V§) 1lim - V(q) == ,
g+S

(V4) There is a neighborhood W of § in £ and U e cY(W\S, R) such
that U(g) » » as g + S and =V(qg) > IU'(q)I2 fer g e W\S,
then the above nroof shows (PS)+ holds for As.
The next step in showing that ¢ as given by (1.3) is a critical value
of 1 is a version of a standard "Deformation Theorem" that is appropriate
for our setting. For ¢ ¢ R, let A, ={g e | 1(q) < o} and Ky =

{geA] I(q) =0 and 1'(q) = 0}.

Proposition 1.17: Let V satisfy (V4) - (V4). Suppose s is not a critical

value of 1I. Then for all E-> 0 there is an € >0 and n € C({0,1] x A, A)

such that

AR AL T AN TR VYN -

DA% Sy
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1° n(t,q) =q 1if I(q) ¢ <s-Z, ste) .
2° I(n(s,q)) < I{g) for s » 0

3° n(1,As+€) < Agl
4° n(1,¢) : X %,

5° n(1,¢) = T =+ T .

Procf: The proof of a "standard" version of the Deformation Theorem can be
found in [9, Appendix A]. We will only indicate the minor modifications in
its proof needed to handle the differences in structure encountered here. The

map n 1is a solution of a differential equation of the form

ﬂ: =
(1.18) 3t win)¥(n) , n(0,q) q

where 0 < w € 1 1is a cut-off function and ¥ is a pseudogradient vector
field for I'. The choice of ® guarantees that 1° holds and the choice of
¥ gives 2°. Since I(g) + ® as g + 9A, 2° and Lemma 1.11 show that
n e C({0,1] x A, A).

Property 3° follows as in [9]. Note that I is invariant under a
natural st symmetry, namely
(1.19) I(q(t+8)) = I(q(t))
for all 6 € R/[0,T]. Hence w can be chosen so that it is also invariant
under the S' action and ¥ so that it is equivariant with respect to this
action. The fixed point set of the action in A is K. Hence

9

~ ~ *
n{t,*) : A+ A and n(t,.) 1is also s equivariant. Finally if h e ' '

i'j hg = n{s,h) ¢ T via 4° and the associated map ﬁs from s2 » s if n = 3

. ‘ -

e or from S""2 x s' to s™! for n'> 3 is clearly homotopic to Hh.

\. -

Ped

'\-_,' ~ _ ~ °
,:f: Therefore deg hs = deg h # 0 and 5° holds.
> ._-, ,

[ X

-2 Theorem 1.20: If V satisfies (V4) - (V,4), then for each T > 0, I has a
o

e critical value c given by (1.3) with a corresponding critical point gq € A

= -9-

s
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B which is a classical solution of (HS).
Proof: Since (V3) holds, ¢ > 0 via Prorosition 1.4. Using 3° and 4° in a
N
:: standard way - see e.g. [9] - shows that ¢ 1is a critical value of I in
\':-
:}? A. Lastly a simple regularity argument shows q 1is a classical solution of
(HS).
:ﬁj Remark 1.21: 1If V satisfies (V}), (V,), (V4), and (V}), Remark 1.10 and
P
1.16 and a slightly modified proof of Theorem 1.20 shows the conclusions of
Theorem 1.20 also hold for this setting. See also {1].
.. Remark 1.22: Since Theorem 1.20 holds for all T > 0, if (HS} has no
" SEemarr <4
- equilibrium solutions, a sequence of T periodic solutions of (HS), (distinct
) in ET)’ can be constructed as follows: For each k ¢ N, let qp(t) be a
. solution of (HS) of period T/k given by Theorem 1.20. Say qq(t) has
- minimal periond T/k1. Then for k > k4, qp(t) 1is distinct from gq4(t].
:f: Similar reasoning shows that infinitely many of the functions q(t} are
distinct. However if (HS) has equilibrium solutions, a more careful argument
is needed to get multiple solutions and thus will be carried out in §2.
\
[
|
§2. A lower bound for ¢ and its conseguences
4{- In this section, the lower bound (0.2) for c will be derived and it |
S |
{:' will be used tc get better existence and multiplicity results for (HS) than in
o §1.
~
Yo,
\ﬁ‘ Proposition 2.1: Let V satisfy (V,) - (V3) and let ¢ be as in {(1.3). 1If
AN
S
s 9(0) = 0 and for r > 0,
f'\.
Y -1
9., (2.2) p(r) = max =~ (V(q)) /
Lol 0<|q|<r
A
A
. then
A
i’::- '
A |
0: -10~- !
A" |
~ |
2
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oA

o 1

% (2.3) T < cpl2(2Tc)72) .

o
‘ Proof: (V1) - (V3) imply that ¢ 1is a continuous monotone nondecreasing
ey

~a

‘ﬁ\ function with ¢(r) » » as r + ». For § > 0, set

‘S

r': (2.4) ¢e(r) = 8r + olr) .

." Then Pq has the same properties as ¢ and is strictly monotone increasing.
;t{: let q ¢ A. It can be written as

<

S (2.5) q(t) = £ + Q(t)
1R
, where £ = [(q] and Q is orthogonal in E to R™ C E. Suppose
N

e (2.6) I(q) < b .

N
V- Then {(1.1), (1.6), and (2.6) imply

. a%0Y

1

o (2.7) o1 _ < (2bm)72 .

oS Lw

D Now by (V,), (1.1), and (2.4),

o _ (T=(@Vh T Vo (T -1

T = fo(_v‘q)) at < (fo - V(@ar) 2 (fo - (V(q)) ‘dat)

K-, (2.8) ;
e e /> T

A 2
e < b2[ g, tlalrae .
"\-:

-~
s

Substituting (2.5) into (2.8) and using (2.7) and the monotonicity of Pg

UI

v then shows
::-': 2 1/2
o (2.9) T™/b < T g . (|E] +0Q1 ) < T g (|g] + (2b1)72) .
- ] > ]
-~
o Consequently
. - 1
o (2.10) v (T/b) - (2bT)72 < [g] .
K
o Let s e (0,1]. Then by (2.10) and (2.7),
'.: 1 1/
'y (2.11) le + soce)] > |g] - ster _ > 9y (T/B) - 2(2bT)72 .
st L
o
:: Suppose that
N - 1
ol (2.12) v (T/b) - 2(2bT)2 > 0 .
- 4‘ Then (2.11) - (2.12) show those q € A satisfying (2.6) are homotopic in A
¢
¥: to their mean values. If (2.12) held for b = c+¢ for some ¢ > 0, then
)
'
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* * -
\#:~ there would be an b ¢ T such that h(x) satisfies (2.6) for all x e D""2,

-\‘

SO
N Consequently the rap hi(x) would be homotopic to its mean value for all
(
R X € D""2 and therefore deg h = 0, contrary to h ¢ F'. Hence (2.12) cannot
-.\‘.'

A hold for b = c+e. Since this is the case for all ¢ > 0, it follows that
"

Sy 1/

(2.13) T < gg(2(2cT)72)

¢
120

Y and letting ® > 0 yields (2.3).

A

;f:~ Remark 2.14: (i) Suppose that V also depends on t in a T-periodic

- fashion. Then the above argument goes through virtually unchanged to yield
o (2.3) for this case.
Lt L
“iji (i) Suppose that (V4) and (V3) are replaced by (V}]) and (Vé) (with 0 ¢ S)
Ol and the definition of ¢ 1is replaced by ¢(0) = 0 and for r > 0,

-~
;5?ﬁ plr) = sup - (v~ .
n |a|<r,qfs

e .
( If further A and F’ are replaced by AS and FS, it is easy to see that
A

e the argument of Proposition 2.1 carries over unchanged yielding (2.3) for this
e situation.

S

¥
2

Two kinds of applications of (2.3) will be given. The first is to forced

o\

'l

o .

“w

oy

{o\".

N Pe TR
o o e,

_}:Q versions of (HS):
I"“~'
h\--, .. _
,j:; (2.15) q + V&(t,q) =0 .
‘_' For this setting we interpret (V.l) = (V4) to mean the natural extension of
n"‘_.
f:f these hypotheses to reflect the further dependence of V on t in a T-
;:t, periodic fashion.
‘:'
e Theorem 2.16: Suppose V is T-periodic in t and satisfies (V) = (V,).
-r,:'
il Then (2.15) possesses a T-periodic solution.
i g
o
;™
. Proof: let ¢ be defined as in (1.3). By Remark 2.14(i), the estimate (2.3)
R
[N =
”H: holds. If c¢q 1is defined as a minimax of I over a subclass of F., then
A
S
0 » -12-
o
N
.'Q v
@ N,
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€q 2 co Let

A

~ ' -~
\ r={(herl | Ith(+N) <

if n =3 or

A * -
r={(hel | I(hi{x)) < %- for x ¢ S° 3}

if n > 3., Proposition 1.17 no longer holds in its entirety since V depends
on t so I is no longer S1 invariant. However the proof holds up to

(1.19). Since <4 > ¢c> %y choosing E.= c/3, by 1° of Proposition 1.17, it

~ ~

follows that =n(1,-) : T »+ I'. Hence the reasoning of the proof of Theorem
1.20 shows 4 is a critical value of I and the corresponding critical
point is a solution of (2.15).

Combining the proof of Theorem 2.16 with Remarks 1.10, 1.16, and 2.14(ii)

immediately gives:

Theorem 2.17: If V 1is T-periodic in t and satisfies (V;), (Vy), (Vy) -

(V&), then (2.15) possesses a T-periodic solution.

As a second application of (2.3), some multiplicity results will be

obtained in the setting of Theorem 1.20.

Theorem 2.18: If V satisfies (V1) - (V4), I possesses an unbounded

sequence of critical values.

Proof: For each k € N, Theorem 1.20 can be applied with T replaced by
T/k to the functional

(%G 1al?

(2.19) I (q) = 0 (2 - V(q)ldt

obtaining a critical value b, and critical point qy ¢ w;}i N A. By (2.3),
-9 1/2

(2.20) T/k < by el2(2Tk 'b)"2) .

If k b, is bounded along some subsequence, (2.20) shows

(2.21) T<CO
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Remark 2.29: Corollary 2.24 implies infinitely many of the loops di(t)

which is impossible. Hence k by + » as k + =. Considering gy as an

element of w%'z, we have

(2.22) ¢y = I(qk) =k bk + ®

as k » » and the Theorem follows.

Corollary 2.23: Under the hypotheses of Theorem 2.18, if further (Vg) holas,

(HS) possesses infinitely many distinct nonconstant T-periodic solutions.

Proof: Note that for gq € K, I(q) = -TV(g). By (Vg), I is bounded on K.

Hence the result follows.

Coroilary 2.24: Along a subsequence of k + », either

(2.25) min qu(t)] + 0
tC[OrT]
or
(2.26) qul T -
L

Proof: By (2.22), I(qy) » = as k * = The form of I and (V1)-(V4)

imply either (2.24) holds or

(2.27) Iékl , e

L
along some subsequence of k + «=. (HS) implies

2

(2.28) 1G,1° = [ V'(g) - qat

so if neither (2.25) nor (2.26) were valid, by (2.28) and (V1)-(V4), &k

would be bounded in L2, contrary to (2.27).

are

geometrically distinct.
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Once again by applying the reasoning of Theorem 2.18 together with
Remarks 1.10, 1.16, and (2.14)(ii), we get an analogous result where there is

a more general singular set.

Theorem 2.30: If V satisfies (V;), (Vz), (Vé) - (V}), then for each T > 0,

(HS) possesses infinitely many distinct T-periodic solutions. If further (VS)

holds, (HS) possesses infinitely many distinct nonconstant solutions.

Remark 2.31: Ambrosetti and Coti=-Zelati [1, 3] have obtained analogues of
Theorems 2.18 and 2.30 when V depends on t in a T-periodic fashion. Their
arguments are less direct than ours. It is unclear as to whether they extend

to treat cases like those of the next section.

§3. A weak force condition

In this section will show how dropping (V4) still leads to the existence
of multiple T-periodic solutions of (HS). As was seen in Lemma 1.11, under
hypothesis (V3) = (V4), if q € W;’z(R,Rn) and I(g) < », then q e A. If
(vy) merely holds, this is no longer the case. Functions q ¢ E can be
constructed so that q(0) = 0. Thus critical points of I under (V;) may
enter the singularity, i.e. may be "collision orbits". This leads us to the

following notion of generalized solution of (HS).

i

SN

Definition 3.1: A function g ¢ CT(R,RP) is a generalized T-periodic

L

solution of (HS) if

(i) q vanishes on a set, 7, of measure 0

(11) q € C2(R\D,R")

P Rl rl ot i
RARARN |
a _» O.I‘l' ';

y *
]
e«
- 8 v s e,

(iii) gq satisfies (HS) on R\D

(iv) q € E; and I(q) <

&

S

(v) = [&(t)lz + V(q(t)) = constant for t € R\D.

AR R
v A
N |-
n

2B sun &

144
<@
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Note that energy is conserved for (HS) in each component ¢f R\JU. Condition
{(v) in Definition 3.1 further reguires that the constant is the same for each
component.

By using an approximation argument based on the results of §1 - 2, we
will show that (HS) possesses multiple generalized T-periodic solutions. More

precisely we have:

Theorem 3.2: Let V satisfy (V1) - (V3). Then for each T > 0 (HS)

possesses infinitely many distinct generalized T-periodic solutions in ET.

Proof: For each § > 0, let VG(q) be a potential satisfying (V4) = (V4),
vg =V if |ql > 6§, and

(3.3) Vs > =V .

Let k ¢ N and set

- T/k[1

«2
(3.4) L.,s® = Jg EIqI -Vs(q)]dt .

We claim there exist constants a, Bx 1independent of § such that if %,

€ w;}i N A 1is the critical point of Ik,é obtained via Theorem 2.18, then

3.5 < .
(3.5) 0 <oy STy 509,60 € By
Furthermore a, can be chosen so that
(3.6) ay *+ ® as k » o .

To verify these assertions, let
Ay = {q e | @ is T/k periodic}
and

n-2 ~
I, ={(hec(p “,A) | deg h # 0} .
k k
Choose h, € I'y. Therefore for the associated map E1, there is a constant

g > 0 such that

(3.7) min |E1(c)(t)| >0>0 .

-2
xeD" < ,tel0,T]

Define h, by
-16-
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(3.8) hk(x)(t) = h1(x)(kt) .
Hence h, € rk and by (3.8),
(3.9) min R, 0 e)] >0 .
chn—z,te(O,T/k]
Thus if § < o,
(3.10) Va(hk(x)(t)) = V(h (x)(t)) .
Therefore for § < g,
ck(é) = I1,6(qk,6) =k ;n§ miﬁz Ik,G(h(x))
“x XeD
(3.11)
<k max Ik,6(hk(X)) =k max Ik(hk(x)) = Bk .
n-2 n-2
xeD xeD
To get the lower bound in (3.5), let ¢6(0) =0 and for s > 0,

(3.12) ¢6(s) = max
0<]q|<s
Then by (3.3),
(3.13) p5(8) < o(s)
for s » 0. Now cp(8) =k Ik,G(qk,G) = k b, (§) and by (2.3),

or using (3.13),
(3.14)

Define

Passing to a limit in (3.14) shows

(3.15)

Hence the form of ¢

bounded in k

which is impossible.

S T Y
T atet

h I

along a subsequence, passing to a limit in (3.15) shows

T T T S T T P Y S I R TS T %Y -
‘f v fo.fﬂfgfu,$f A, Ng.a:vﬁa\a”e~ M, a‘;.¢\w‘w
> - -~ b - -~ » N » L ks L3 e i L)

-1
- (VG(q)) .

-1 1/2
T/k < bk(5)¢6(2(2Tk bk(é)) )

T <o (8) 92021k 2 ¢, (61)72) .

a, = 1inf c (§) .
k 0<68<o k
T < (2(2Tk "2 )1/2)
<a e a, .
shows a, > 0 yielding {3.5). Finally if (ak) were
T< O

Therefore (3.6) holds.
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Now the existence of generalized T-periodic solutions of (HS) can be
established. Fixing k and letting § + 0, (3.5) provides upper bounds for
I&kléuLz and -fgvs(qklé(t))dt. Note that £x,s = [qk,dl must be bounded
independently of § for otherwise vd(qk.é(t)) and VQ'S(qk'S(t)) -+ 0
uniformly for t ¢ [(0,T] and then as in (1.13) - (1.15), a = 0. Hence

{qk 5 | 8§ < 9} are bounded in FE. Consequently a subsequence of these
’

functions converges weakly in E and strongly in L® to q) ¢ E. Moreover

(3.16) - [T Viag(t))de < b -
Indeed by (3.5), for all § < o
(3.17) - fT V(g . (t))dt < 8, .
0 & k,§ |3

Let ¢ > 0 and x.(s) =0 if s < ¢ and x.(s) =1 if s > e¢. Then (3.17)
implies
(3.18) - [T x tlq (£)]Vq (£))dt < B, .

0 "¢ k,§ § °k,6 k
Since dx,5 * ax in CT(R,R"), (3.18) shows

T
(3.19) - o xeUla () vige(t)iat < g -
Letting € +» 0 in (3.19) yields (3.17). By (3.17) and (V3), the set D,(
where q vanishes must have measure 0. Let 1 € i0,T]\ . Then there is
an €, w > 0 such that !t-rf < w implies =V{(gp(t)) > g. Since IW%,s * Ik
uniformly in C2 on {]t-rl < w} (along a subsequence) and A, s satisfies
(HS) for VG' it readily follows that g is a classical solution of (HS) on
R\Dy. Next observe that (v) of Definition 3.1 holds for qy,6,g with D = 0.
Hence by passing to a limit we get it for qp on R\Dy.
At this point for each k ¢ N, we have constructed a T/k periodic

solution 9 of (HS). Note that if g is an equilibrium solution of
(HS), |qk| # 0 and therefore qy, ¢ + qQy uniformly in C%(R,lp) as 6 + 0.

Consequently

(3.20) 11'5(qk'6) + I(qk) > a -

-18=




This observation shows that infinitely many of the functions q) are
distinct. Indeed if a subsequence of the q, were constant solutions, by
(3.20) and (3.6), I(gq) > ay * » as k + = along this subsequence. On the
other hand if there were only finitely many constant solutions, since the
period T/k of S approaches 0 as k + =, infinitely many of the

(nonconstant) I, must be distinct.

Corollary 3.21: If V satisfies (V1) - (V3) and (VS), then for each T > 0,

Laal

(HS) possesses infinitely many distinct nonconstant generalized T-periodic

solutions.

Proof: If not, by Theorem 3.2, Qe is a constant solution for all k ¢ N
and

(3.22) I(qy) = -TV(gy) > ay

so I(qk) + » as h + =» by (3.20). But by (VS)‘ I is bounded on K, a
contradiction.

Next consider (2.15)

Definition 3.23: A function g € CT(R,Rn) is a generalized T-periodic

’

solution of (2.15) if g satisfies (i) = (iv) of Definition 3.1.

with this definition of solution and our understanding of the meaning of
(V,) - (V3) in the time deendent case, Theorem 2.16 and the argument of

Theorem 3.2 show that

Theorem 3.24: If V satisfies (V,) - (V3), then (2.15) possesses a

generalized T-periodic solutions.

Remark 3.25: As in §2, by replacing (V,) and (V3) by (V}) and (V§), we get

analogues of Theorems 3.2 and 3.24 for this setting.
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Remark 3.26: The definition of a generalized T-periodic sovlution allows such

a solution to pass through the origin, indeed for possibly infinitely many
values of t ¢ [(0,T]. We suspect that this is not possible for a minimax
solution. An i-teresting question to pursue is the regularity of the
solutions our minimax procedure produces. Can such a solution actually be a
collision orbit? Alternatively what further conditions on V guarantee

classical solutions?

e g -"v‘.-’.l' h

e w €@
v e
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